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Structure of coupled plasmon-phonon modes in 
degenerate polar semiconductors 
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Department of Mathematics, Faculty of Engineering, Iwate Univenity, 4-3-5 Ueda, 
Morioka 020, Japan 

Received 6 November 1990, in final form 4 February 1991 

Abstract. We investigate the structure of coupled plarmon-phonon modes in degenerate 
polar semiconductors by decomposing the induced charge density into a component due to 
carrierdensityfluctuation and ammponent resulting from opticalphonon polarization. This 
decomposition of the induced charge density into two components reveals the nature of 
plasmon-polar phonon coupling. Each energy dispersion branch has its own characteristic 
mode structure. Analysis of the mode structure with change of carrier concentration shows 
how the character of the mode structure vanes when strong plasmon-polar phonon mixing 
occurs and, consequently, how the plasmon-phonon couplingtransforms itscharacter when 
strong mixing occurs. 

1. Introduction 

In doped polar semiconductors, plasmons due to free carriers are coupled with optical 
phonons when the doping level is appropriately chosen and these excitations lie in the 
same energy regime. Experimentally, the coupled plasmon-phonon modes have been 
observed by infrared reflection measurements and Raman scattering measurements 
(Richter 1984, Abstreiter et a1 1984 and references therein). Especially, by varying the 
incident laser frequency, Raman scattering measurements can observe excitation modes 
of finite q values in a large q region that extends to the single-particle excitation 
continuum. The principal theoretical approaches to the description of the response of 
free carriers are the hydrodynamic theory, the Lindhard theory (Lindhard 1954) and 
the Lindhard-Mermin theory (Mermin 1970). In order to investigate coupled plasmon- 
phonon modes, these treatments of carriers are combined with the Lorentzian oscillator 
model, which describes the optical phonon polarization (Richter 1984, Abstreiter er al 
1984 and references therein). The Lindhard approach (Katayama er a1 1975, Lemmens 
and Devreese 1974, Lemmens et a1 1975, Yuasa et a1 1986) and the Lindhard-Mermin 
approach (Abstreiter et all979) describe the response of free carriers in the random- 
phase approximation, and involves single-particle excitations in an appropriate manner. 
The Lindhard approach does not include the effect of collision damping due to  
impurities, etc. Mermin incorporated the effect of collision damping into the Lindhard 
theory within the relaxation time approximation (Mermin 1970). This is the Lindhard- 
Mermin theory. The relaxation time introduced in the Lindhard-Mermin theory is 
mostly treated as a variable parameter to fit experimental data. These theoretical 
approaches have beensuccessfully applied to analysis of experimentaldata, particularly 
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Raman scattering measurements. The central subject of these theoretical analyses was 
to calculate the energy-loss function, and ultimately, Raman spectra. The energy-loss 
function plays a central role in describing the Raman scattering cross section (see, for 
example, equation (75) in Richter (1984) or equation (2.96) in Abstreiter er al(1984)). 

The present work attempts to gain a deeper insight into the plasmon-polar phonon 
coupling itself. We investigate the structure of coupled plasmon-polar phonon modes 
by decomposing the induced charge density of each excitation mode into a component 
due to carrier density fluctuation and that arisingfromoptical phonon polarization. This 
decomposition of the induced charge density into two components reveals the nature of 
plasmon-polar phonon coupling. In addition, we also examine the contribution of each 
component to the resonance intensity of the energy-loss function. Analysis of the mode 
structure with change of carrier concentration shows how the character of the mode 
structure varies when strong plasmon-phonon mixing occurs and, accordingly, how the 
plasmon-phonon coupling transforms its character when strong mixing occurs, 

We are concerned with n-type degenerate polar semiconductors. In doped polar 
semiconductors such as n-type GaAs and n-type InSb (in particular, in n-type InSb), 
carrier electrons readily become degenerate as doping becomes heavier, because com- 
bination of an exceedingly small effective mass and a large dielectric constant gives a 
very large effective Bohr radius and, consequently, a very smaIleffective electron density 
parameter. We adopt n-type InSb as an example for calculation. Our analysis is, for the 
most part, based on the Lindhard theory (Lindhard 1954) combined with the Lorentzian 
oscillator model, and only in the last section do we invoke the Lindhard-Mermin theory 
(Mermin 1970) to explore the effect of collision damping due to impurities, etc. The 
effect of collision damping makes no significant alteration to the result that has been 
obtained by the Lindhard approach. 

2. Model 

We employ the Lindhard theory (and the Lindhard-Mermin theory only in the last 
section) to describe the response of carriers and the Lorentzian oscillator model to 
describe the phonon polarization. 

The external charge density s(q,  w )  , which is introduced to exert perturbation on the 
system, generates the external potential 

where q and w denote a wavevector and an angular frequency, respectively. The total 
potential V ( q ,  w )  is produced by both external charges and induced charges: 

Here E, is the high-frequency dielectric constant to describe the background screening, 
and 6p(q, w )  is the induced charge density. The induced charge density 6p(q, w )  can 
be decomposed into a component arising from carrier electron density fluctuation, 
6p&, U), and a component due to phonon polarization, 6pPh(q, w ) :  

The response of carrier electrons is described by the equation 

In the Lindhard theory, the susccptibilityx(q, w )  takes the form 

w7. U) = (4J47Z)s(4, w )  

V(& w )  = ( 4 n / E L q z ) [ s ( q ?  0) + 6 P k ,  w)l. 

(1) 

(2) 

sp('?, U) &ef(q, + 6pph(q, (3) 

~P.I(P, w )  = e2x(q, w)v(q ,  w ) .  (4) 
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In this equation &(k) is the energy dispersion of the conduction band, which is given by 

e(k)  = h2k'/2m* (6)  
?J is an infinitesimal positive constant andf(k) is the Fermi-Dirac distribution function 
for conduction electron states. For simplicity of calculation, we neglect the temperature 
effect around the Fermi level. In this approximation, f (k) becomes a step function, and 
the integration on the right-hand side of equation (5 )  can be performed analytically 
(Lindhard 1954). The optical phonon polarization P(r, w )  is described by the equation 

( ~ $ 0  - w z  - iyw)P(r, w )  = - (&,/47c)W& grad v(r, w) 

u g h  = [ ( E O  - &, ) /Ez ]W$O.  

(7) 

(8) 

where wph is defined by 

In equations (7) and (8), wTo is the transverse optical phonon frequency, E, and c0 
are the high-frequency and static dielectric constants at zero carrier concentration, 
respectively, and yis the phonon relaxation rate constant. The induced charge density 
arising from phonon polarization, 6pph(r, U ) ,  is given by 

Taking the divergence and Fourier transform of equation (7) yields 
6pph(r, w )  = - divP(r, w ) .  (9) 

Elimination of s(q, a), 6p,,(q, w )  and 6pph(q, w )  from equations (l), (2), (3), (4) and 
(10) to obtain the relation between U(q, w )  and V(q, U ) ,  and the definition of the 
dielectric function &(q, w )  as 

leads to the dielectric function of the well known form 
V ( q , w )  = 4 7 %  w)/+Lw) (11) 

&(q, = Eph(W) - (4z@2/q2)X(q> (12) 
where cph(w) is the dielectric function to describe the phonon polarization and the 
background polarization: 
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Table 1. Carrier eleclron concentrations n and related quantities relevant to the present 
analysis. 

n ,  0.2717 9.3w 0.01591 206.4 594,7 0.3470 
n2 0.5137 11.50 0.01699 166.9 557.0 0.2996 
n, 0.9268 14.00 0.01837 137.1 515.0 0.2662 
n, 1.463 16.30 0.01976 117.7 478.9 0.2458 
Ils 2.280 18.90 0.02142 101.5 441.8 0.2298 
nh 3.796 22.40 0.02377 85.68 398.1 0.2152 

n = h b e t  to mdic3te c x h  canter eleclron m n c ~ n t r ~ n o n .  
m i  ,me = Electron-eflcctive m3lsratiodefincd3t Ferrm navenumber k r  
I ,  = Radiusofspheir conniningone electron [4.74;5)11 = 1. 
0;  = Elfeecube Bohr rddiuso; = 
r: = Efleclive electron density parameter r :  = rO/oQ 

m;e:  

This expression signifies that the value of the energy-loss function can be decomposed 
into an electron contribution and a phonon contribution. A plot of 6p,,(q, w ) /  
[&s(q,  w)l. dp,dq,  U)/[E,s(q,  U)] and I / + ? ,  w )  (= V(q ,  w) /U(q ,  w ) )  on the complex 
plane for each resonance mode elucidates the structure of the coupled plasmon-polar 
phonon mode and thecontributionofthecarrier electrongasor the phonon polarization 
to the energy loss. As is seen from equations (16) and (17), the sum of Im[6p,,(q, U ) /  
E,s(q, U ) ]  andIm[6pP,(q, U)/E,s(q, w ) ]  isequal toIm[l/r(q, U ) ] .  We taken-type InSb 
as an example for calculation. The conduction band dispersion of InSb, though almost 
isotropic, is highly non-parabolic (see Kane (1957) or figure 2 in Inaoka era/ (1987)). 
This effect of non-parabolicit) is incorporated into the calculation by using the effective 
mass defined at the Fermi wavenumber k,  by 

This is a good approximation when we are concerned with excitation modes whose 
wavenumbersq are small compared with kF. The conduction band dispersion E(k) can 
be calculated byKane’sscheme(equati0n (IO) in Kane (1957)) with the band parameter 
values (Isaacson 1968). mc /me = 0.0136 (conventional effective-mass ratio defined at 
the conduction band bottom), A = 0.98 eV (spin-orbit splitting) and .Eg = 0.235 eV 
(band gap for T =  1.4 K). The above effective mass m; is employed as the effective 
mass m* in the Lindhard susceptibility x(q, U ) .  Incidentally, the band gap Eg has an 
appreciable temperature dependence. At T = 290 K, the band gap takes the value Eg = 
0.17 eV (Roberts and Quarrington 1955), which leads to a somewhat different value of 
m;. In the following calculation, we use the values of E,, E,,, oTo and y that were 
determined by Hass and Henvis (1962) by means of infrared reflection measurements. 

3. Variation of the mode structure in strong plasmon-polar phonon mixing 

Plasmon energies vary with change of doping level, namely change of carrier concen- 
tration, and strong plasmon-polar phonon mixing occurs when plasmon energies cross 
over phonon energies. In this section, we explore how the mode structure varies when 
strong mixing takes place. In table 1, values of the effective carrier electron density 
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Figure 1. Energy dispersion diagrams for two carrier concentrations (n2 and nd in table 1). 
The dotted and broken curves are described in the text. 
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parameter r: are presented for six carrier concentrations, which cover the strong mixing 
concentration regime. In view of these high effective densities, we can expect carrier 
electrons to be highly degenerate in the carrier concentration regime where strong 
plasmon-phonon mixing occurs. 

We can draw energy dispersion curves by calculating the energy-loss function F(q, w )  
and locating resonance modes. Figure 1 exhibits the energy dispersion diagrams for two 
carrier concentrations (n ,  and n4 in table 1). In each panel, the electron-hole pair 
excitation continuum extends on the right side of the dotted curve, and the resonance 
intensity of the energy-loss function decays away on the broken curves. There exist three 
dispersion branches, which we name A, Band C, as shown in eachpanel. The mode on 
branch A or B immediately decays away when it enters the pair excitation continuum. 
With decreasing q the mode on branch C gradually loses its resonance intensity and 
disappears into the background intensity due to pair excitations. In figures 6 and 18 of 
Richter (1984), the existence of the three dispersion branches is shown as a three- 
dimensional view of the q and w dependences of the energy-loss function. As carrier 
concentration decreases from above to below the strong mixing concentration regime, 
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Figure 2. Camer concentration dependence of energies oithc 1x0 resonance modes at p = 
1 6 x  IO'cm- .Themodrs32.a,andb,.b,arechhibiledinfigurc I Thetwobrokenrunes 
are described tn the text .  

the upper branchA hangsdown to thephononenergyregime (though thisbranch always 
lies above the longitudinal optical phonon energy fiw, = 24.45 meV), which repels the 
lower branch B to a lower energy range. 

Figure 2 exhibits the carrier concentration dependence of energies of the two modes 
at q = 1.6 X lo5 cm-'. The abscissa is indicated in logarithmic scale. The subscripts 1 to 
6 of mode labels signify carrier concentrations and correspond to the same subscripts of 
n in table 1. The energy of the higher-energy mode approaches the longitudinal optical 
phonon energy hwLo (=24.45 meV) with decrease of carrier concentration, and the 
energy of the lower-energy mode approachesthe transverse optical phononenergy hwTo 
(=22.90 meV) with increase of carrier concentration. The broken curve in the higher 
concentration range represents the plasmon energy that is obtained by setting E ~ ~ ( w )  in 
equation (13) equal to E,; and the broken curve in the lower concentration range 
indicates the plasmon energy that is obtained by setting in equation (13) equal to 
E ~ .  This carrier concentration dependence of the two mode energies asserts that strong 
plasmon-phonon mixing takes place in a concentration range n - lo" cm-j. 

We investigate how the mode structure varies when strong mixing occurs. Figure 3 
exhibits the structure of the two resonance modes at q = 1.6 X lo5 cm-' for various 
carrier concentrations. Here 6pCl(q, w)/[E,s(q, w ) ] ,  6pph(q, w) / [E ,S (q ,  w ) ]  and l/  
E(q, w )  (= V(q,  w) /U(q ,  U ) )  are plotted on the complex plane as full squares, full 
triangles and open circles, respectively. Each of these modes corresponds to one of the 
modes in figure 2, according to mode labelling. The panels (a )  and (6) of figure 3 show 
the structure of higher- and lower-energy resonance modes, respectively. The value of 
l/e(q, w )  becomes pure imaginary or almost pure imaginary at resonance (see open 
circlesin figure 3) because resonancecorresponds to the poleof l/E(q, w ) .  Theimaginary 
part of l/E(q, w )  gives the opposite sign of the value of the energy-loss function. It is 
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Figure 3. Structure of the two resonance modes at q = 1.6 X IO5 cm-' for six carrier con- 
centrations listed in table 1: (U) higher-energy modes; ( b )  lower-energy modes (see figure 
2). For each mode, the symbols used are: (M) 6p,(q,  w)/[&.s(q, w ) ] ;  (A) 6p&,o)/ 
[&.$(e, w ) ] ;  (0) l/&(q, w )  (= !'(e, w)/U(q, w)). The abscissa and the ordinate are the real 
and imaginary axes, respectively. 

important to note that s(q, w )  has the same phase as U(q,  w )  (see equation (1)) when 
we consider the phase relation between 6pel(q, w )  and V(q,  w )  or between 6pph(q, w )  
and V(q, U). As is seen from equation (17). the imaginary parts of -6pel(q, w ) /  
[E&, w ) ]  and -6p,,(q, w)/[&,s(q, w) ]  make an additive contribution to the value of 
the energy-loss function. What is common to all the modes in figure 3 is that 6p,,(q, w )  
has completely the same phase as V(q,  w )  because these modes exist outside the pair 
excitation continuum and x(q, U) is real and positive (see equation (4)). 

First, weanalyse thestructureofhigher-energymodes, whichisshowninfigure 3(a). 
What ischaracteristic of higher-energy modes is that 6pel(q, w )  has the same or almost 
the same phase as 6pph(q, w ) .  This is the mode character of branch A. Both the response 
of carriers and the phonon polarization operate to enhance the energy-loss intensity, 
because Im[Gp,,(q, w)/&,s(q, w ) ]  and Im[6pPh(q, w)/&,s(q, w ) ]  are both negative. The 
amplitude ratio of 6pel(q, w )  and 6&($, w )  varies significantly with change of carrier 
concentration. Above the strong mixing concentration regime, the amplitude of 
Sp&, w )  is considerably larger than that of 6pph(q, w ) ,  which implies that the mode is 
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plasmon-like. With decrease of carrier concentration, however, 6pph(q, w )  becomes 
more and more influential, and below the strong mixing concentration regime, 
6pph(q, w )  acquires a larger amplitude. This variation in structure with decrease of 
carrier concentration implies the transformation from plasmon-like to phonon-like 
nature. 

Next, we turn our attention to the structure of lower-energy modes, which is shown 
in figure 3(b). The feature in the structure of lower-energy modes is that 6pel(q, o) is in 
anti-phase relation with 6pph(q, w ) .  and that the amplitude of Sp,,(q, w )  is always larger 
than that of 6pPh(q, w ) .  This is the mode character of branch B. Carrier electrons make 
a dominant contribution to the energy loss, and the phonon polarization acts to reduce 
the energy loss because the imaginary part of 6pph(q, o)/[e,s(q, U)] is positive. The 
amplitude ratio of 6p&, w )  and 6pp,(q,  w )  variesconspicuously with change of carrier 
concentration, though the amplitude of bp,l(q, o) is larger than that of 6pph(q, w )  over 
the whole range of carrier concentration. Above thestrong mixing concentration regime, 
the amplitude of 6p,,(q, CO) is, in large part, cancelled by that of 6pph(q, w ) ,  With 
decrease of carrier concentration, 6pe1(q, w )  becomesmoreand more predominant over 
6pph(q, w ) ,  and below the strong mixing concentration regime the lower-energy mode 
becomes plasmon-like. 

As is stated in section 1, the present analysis is based on the Lindhard approach, 
which does not include the effect of collision damping due to impurities, etc. In this 
approach, the energy width of the plasmon resonance peak of the energy-loss function 
originates only from coupling w?ith the phonon whose damping is taken into account by 
the relaxation rate constant y (see equation (13)). Accordingly, as the mode becomes 
more plasmon-like, the resonance peak becomes sharper. This is the reason why 

very large imaginary parts in modes ab, as or b,, bl. 

the resonance peak of the energy-loss function, which is defined by 

h ( q .  w)/Iw(q,  w)17 6pp+ (iJ)/[w(q. w)l and 1/E(q, U )  (=%, U)/%, U)) have 

Here we examine the integrated resonance intensity, namely, the integrated area of 

This quantity plays a significant role in analysing the intensity in the excitation energy 
spectrum. According to equations (16) and (17). the integrated resonance intensity 1 
can be decomposed into an electron component and a phonon component: 

I = I,, + lPh (20) 
where I,, and Iph are expressed as 

and 

respectively. Figure 4 shows the carrier concentration dependence of the integrated 
resonance intensity of the two resonance modes at q = 1.6 X lo5 cm-'. The curves A 
and B in figure 4, which correspond to the curves A and B in figure 2, indicate the 
resonance intensity of the higher- and lower-energy modes at q = 1.6 x lo5 an-',  
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Figore 4. Carrier concentration dependence of the integrated resonance intensity [of the 
two modes at q = 1.6 X los cm-‘: curve A, higher-energy mode; curve B,  lowerenergy 
mode, The two broken curves are described in the text. The ordinate and the abscissa are 
both indicated in logarithmic scale. 

respectively. The broken curve describing the asymptotic behaviour of curve A cor- 
responds to the broken curve in the higher concentration range in figure 2 ,  and it 
represents the plasmon resonance intensity that is obtained by setting E ~ ~ ( w )  equal to E, 

(see equation (13)). Similarly, the broken curve describing the asymptotic behaviour of 
curve B corresponds to the broken curve in the lower concentration range in figure 2 ,  
andit represents the plasmon resonance intensity that isobtained by setting E ~ ~ ( W )  equal 
to so. Here we follow each curve from higher to lower carrier concentration, considering 
the corresponding variation of the mode structure presented in figure 3 .  

The higher-energy mode (curve A) is plasmon-like above the strong mixing con- 
centration regime, as shown by the mode structure in figure 3(a) and by the asymptotic 
behaviour of the resonance intensity in figure 4 (note the broken curve in the higher 
concentration range). With decrease of carrier concentration, the resonance intensity of 
the higher-energy mode decreases monotonically and more quickly in the strong mixing 
concentration regime, Below the strong mixingconcentration regime, the higher-energy 
mode becomes phonon-like, as is shown by the mode structure in figure 3(a). With 
further decrease of carrier concentration, the resonance intensity decreases more and 
more slowly and approaches the resonance intensity of the longitudinal optical phonon 
intheabsenceofcarrierelectrons(=0.30). Figure5(a)exhibitsthecarrierconcentration 
dependence of Iel lI  and Ip,,/I for the higher-energy mode. This clarifies the trans- 
formation from plasmon-like to phonon-like nature with decrease of carrier concen- 
tration. 

Above the strong mixing concentration regime, the lower-energy mode involves 
considerable cancellation between 6p,,(g,  w )  and 6p,,(q, w ) ,  as shown in figure 3(6) ,  
and this mode has very weak resonance intensity (curve B in figure 4). As the upper 
dispersion branch hangs down on the lower dispersion branch with decrease of carrier 
concentration, the lower-energy mode becomes coupled with the higher-energy mode 
more strongly and gains stronger resonance intensity. On passing through the strong 
mixingconcentration regime, however, the resonance intensity I turns from acclivity to 
declivity. Below the strong mixing concentration regime, the mode becomes plasmon- 
like, as is shown by the mode structure in figure 3(b) ,  and with decrease of carrier 
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Figure 5. Carrier concentration dependence of ieJ1 and I,hjlof the two resonance modes at 
q = 1.6 x 10' cm": (a) higher-energy mode; (b)  lower-energy mode. 

concentration the mode declines in resonance intensity in accordance with its plasmon 
nature. Figure 5(b)  displays the carrier concentration dependence of Iel/l and Iph/I for 
the lower-energy mode. In the lower-energy mode, I,, is negative, because the phonon 
polarization acts against carrier electrons to suppress the resonance intensity. Above 
thestrongmixingconcentration regime, thevalueofI,,isveryclose to theabsolutevalue 
of Iph, This corresponds to the fact that, as is shown in figure 3(6), 6pCl(q, w )  and 
6p,,(q, w )  almost cancel eachother, though 6p&, w)survives. With decreaseofcarrier 
concentration, the value of Iel /I  decreases and approaches unity, which implies that the 
mode becomes plasmon-like. 

Next, we explore the variation in mode structure of branch C with change of carrier 
concentration. Figure 6 exhibits the mode structure of the resonance mode at q = 
10 x lo5 cm-' for various camer concentrations. The subscripts in mode labels indicate 
carrier concentrations in accordance with the subscripts of n in table 1. What is charac- 
teristic of these modes is that Sp,,(q, U ) ,  which has almost the same phase as V(q,  U ) ,  
has a larger amplitude than 6pel(q, w )  and that 6pel(q, w)/[E,s(q, w)] has a positive 
imaginary part, which acts to suppress the energy loss. These characteristics imply that 
the phonon polarization plays the leading role and that carrier electrons have ascreening 
effect on phonon polarization. In each of these modes, 6p,,(q, w ) / [ w ( q ,  w ) ]  has a finite 
real part, because the susceptibility x(q, w )  has a finite imaginary part owing to pair 
excitations (see equation (4)). With decreasing carrier concentration the imaginary part 
of 6pPh(q, w)/[E,s(q, U ) ] ,  which is negative, gains a larger absolute value and the 
imaginarypartof 6p&, w)/[&s(q, w)],whichis positive. becomessmaller.Inaddition, 
with decrease of carrier concentration the resonance peak of the energy-loss function 
acquires stronger intensity land its energy gradually approaches the longitudinal optical 
phonon energy Am,. These features assert that with decrease of carrier concentration 
the screening effect of carrier electrons on phonon polarization works less and less 
effectively and finally the partially screened phonon mode reduces to the longitudinal 
optical phonon mode, which arises in the absence of carrier electrons. 
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Figured Structureofthe resonance modeatq = 10 x lO'cm-'forsixcarrierconcentrations 
listed in table 1. The modes c2 and c, are exhibited in figure 1 .  For each mode, the 
symbols used are: (W 6pd(q. w ) / [ w ( q ,  m)l; <A) 6p&, w ) / [ w ( q .  w)]; (0) 
l i ~ ~ , w ) ( = v ( P . w ) / U ( 4 . w ) ) .  

4. Variation of the mode structure with change of wavenmher q 

In this section we examine the variation of the mode structure along each dispersion 
branch, namely, with change of wavenumber q. The mode structure of branch A and 
that of branch B are characterized by the coherent phase relation and the anti-phase 
relation of dp&, w )  and 6pPh(q, w) ,  respectively. Figure 7shows the q dependence of 
I and figure 8 exhibits the q dependence of Ie , / l  and Iph/I along each of the branches A 
and B. Carrier concentrations are indicated by the same subscripts of n as in table 1. 
Each curve in figures 7 or 8 terminates at a finite q just before going into the electron- 
hole pair excitation continuum. The resonance intensity of the mode on branch A or B 
immediately decays away into the background intensity due to pair excitations when the 
mode enters the pair excitation continuum. 

First, we focus our attention on the case of the highest carrier concentration nb. The 
value of Iel/I of branch A is close to unity and approaches unity with increase of q (curve 
n6 in figure S(a)). This corresponds to the fact that at this carrier concentration the 
higher-energy branch A is plasmon-like and that with increase of q the mode on branch 
A becomes more plasmon-like because its energy becomes higher and gets further apart 
from the phonon energy regime. Owing to the plasmon nature, with increase of q the 
resonance intensityidecreases monotonically (curve n6infigure7(a)). Asfor the branch 
B, the value of I,, is always larger than the absolute value of Iph for each mode on this 
branch (see figure 8(b) ) .  At this carrier concentration, however, the value of I ,  is very 
close to the absolute value of I,,, and the former strikingly gets closer to the latter with 
increase of q (curves n6 in figure 8(b) ) .  In addition, at this carrier concentration the 
resonance intensity I of branch B is very weak, and decreases monotonically with 
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Figure 8. The q dependence of 1.JI and Irh!l along each of the two disperrlon branches A 
and B. (a) branch A. ( b )  branch B.Thclabelsn,. n,.n,andn,ln~~tccamerconrenlr~tlons 
(sec laole 1). 
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increase of q (curve n6in figure 7(b ) ) .  These featuresimply that the plasmon-like branch 
A, which lies well above branch B, has quite a weak effect on the modes on branch B, 
and that with increase of q this effect of the plasmon-likc branch A becomesweaker and 
weaker because the energy of the plasmon-like branch A becomes higher and becomes 
further apart from the energy of branch B. 

Next, we turn our attention to the case oflower carrier concentration n2 The intensity 
fraction Iel/I of branch B is close to unity throughout the whole range of q, though it 
shows a slight enhancement with increase of q (full curve n,  in figure 8(b)).  This implies 
that at thiscarrierconcentration branchB isplasmon-like, thoughit retainsquite asmall 
fraction of phonon character especially in the larger q range. The intensity fraction 
Ie,/I or I& of branch A has a significant q dependence (curves nz in figure 8(a)) .  This 
indicates that, though the phonon character is dominant in the smaller q range, the 
plasmon character survives persistently in the larger q range. This surviving plasmon 
character is also reflected in the energy dispersion. As is displayed in figure I(a), the 
energy dispersion curve of branch A, which is flat in the smaller q range, bends up 
significantlyinaqrangeq 9 4 x 105cm-’. Thisupward hendingoftheenergydispersion 
curveis attributed to the surviving plasmoncharacter in the largerq range. Withincrease 
of q, the mode on branch A acquires more plasmon character and its resonance intensity 
I increases gradually. However, when the plasmon nature becomes quite predominant 
and the dispersion curve begins to bend up significantly, the resonance intensity I turns 
down and decreases (curve n2 in figure 7(a)).  This analysis of branch A indicates that, 
as the branch A goes down in energy and approaches the phonon energy regime with 
decrease of carrier concentration, the mode character is transformed from plasmon-like 
to phonon-like, and that this transformation germinates in the smaller q range, and 
gradually spreads to the larger q range with decrease of carrier concentration. 

The character of variation of Ie l / I ,  I,JIandIat the intermediate carrier concentration 
n4 is between the character at the lower concentration n,  and that at the higher con- 
centration ne 

As carrier concentration decreases from n6 to n2. the resonance intensity I of branch 
B increases over the whole range of q (see figure 7(b ) ) .  However, with further decrease 
of carrier concentration, the resonance intensity I declines, as is seen from the curve n ,  
in figure 7(b) .  This variation of I corresponds to the carrier concentration dependence 
of Iof  the lower-energy mode at q = 1.6 x lo5 cm-’, which is shown by the curve B in 
figure 4. 

Next, we investigate the variation in mode structure of branch C with change of q. 
Since the situation is the same for every carrier concentration, we present only the result 
for the carrier concentration nq. Figure 9 shows the mode structure of resonance modes 
at various q values. As is stated in the preceding section, the phonon polarization plays 
theleadingroleinmodesofbranchC, andcarrierelectronsoperate toscreen thephonon 
polarization. With increase of q,  the imaginary part of 6p,,(q, w)/[&,s(q, w ) ] ,  which is 
negative, acquires a larger absolute value, while the imaginary part of 6p,,(q, w ) /  
[&,s(q, w ) ] ,  which is positive, decreases significantly after just a slight enhancement. 
With increasing q, the mode on branch C gains stronger rzsonance intensity I of the 
energy-loss function, and its energy asymptotically approaches the longitudinal optical 
phonon energy hwLo. For larger q outside the pair excitation continuum, the resonance 
intensity saturates to the intensity of the longitudinal optical phonon mode, which arises 
in the absence of carrier electrons. These features assert that, with increase of q. the 
screening effect of carrier electrons operates less and less effectively, and that tinally the 
mode on branch C reduces to the longitudinal optical phonon mode in the absence of 
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Figure 9. Struclure of resonance modes on branch C at various values of q .  The labels c4, 
c;,c~.c:.c:'andc;signifytheresonancemodesatq = 10,12,14,22,30and38 X 1OScm-', 
respectively. For each mode, the symbols used are: (m) ~ p . , ~ q , ~ J ) / [ ~ ~ s ( q . 0 ) 1 :  ( A )  
dPpd(ll m)/[€=s(9.0)1;(0) I/d9,0) (= v(9. 'JJ)/u((l, 

carriers. In the resonance mode c;, Sp,,(q, w )  has anti-phase relation with V(q, w )  (and 
Spph(~  U)), because this mode is outside the pair excitation continuum and the sus- 
ceptibility x(q, w )  becomes real (see equation (4)). 

5. Summary and discussion 

There exist three energy dispersion branches, which are named A, B and C, as is 
displayed in figure 1. The results of the present analysis are summarized as follows: 

(i) The mode structure of branch A is characterized by the coherent phase relation 
of Sp,,(q, w )  and 6p,,(q, 0). Decrease of carrier concentration induces the trans- 
formation of the mode structure from plasmon-like to phonon-like character. Above 
thestrongmixingconcentrationregime, ISp,,(q, w)l islargerthan lap,&, w)l  (plasmon- 
like), and below the strong mixing concentration regime, 16pPh(q, o)l is larger than 
16p,,(q, w)l (phonon-like). This transformation from plasmon-like to phonon-like 
character begins in the smaller q range, and with decrease of carrier concentration it 
spreads gradually up to the larger 4 range. With decrease of carrier concentration, the 
resonance intensity of branch A declines, and finally it saturates to the resonance 
intensity of the longitudinal optical phonon in the absence of carriers. 

(ii) The mode structure of branch B is characterized by the anti-phase relation of 
Gpe,(q, w )  and 6pph(q, 0). In this case 16p.,(q, w) l  is larger than ISpph(q, w)l throughout 
the whole rangeof carrier concentration. Above the strongmixingconcentration regime, 
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however, 6pel(q, w )  is, for the most part, cancelled by 6p,,,(q, o), and the resonance 
intensityof thisbranch isquiteweak. Withdecreaseofcarrierconcentration, ISp,,(p, w)l 
becomes larger compared with (6pp,(q,  w)(, and the mode character evolves into the 
plasmon-like character. As the plasmon character becomes more influential with 
decrease of carrier concentration, the resonance intensity of branch B becomes stronger. 
However, after the plasmon character is established, the resonance intensity declines 
with further decrease of carrier concentration, as is consistent with the plasmon nature. 

(iii) The mode character of branch C is that (6pph(q, w)l is larger than 16pel(q, w)l. 
Here 6p,,(q, o) and 6p&, w )  are in anti-phase relation outside the electron-hole pair 
excitation continuum. The mode on branch C is identified as the longitudinal optical 
phonon mode, which is partially screened by carriers. Withincrease ofqor withdecrease 
of carrier concentration, this screening effect operates less and less effectively, which 
leads to enhancement of the resonance intensity. 

Here we mention the effect of collision dampingdue to impurities, acousticphonons, 
etc. The Lindhard-Mermin theory involves this effect within therelaxation time approxi- 
mation (Mermin 1970), and gives the electron susceptibility 

. . . -. . . . . .  . 
where 7 is the relaxation time to describe the effect of collision damping,X(q, o = 0) is 
the Lindhard susceptibility for w = 0 and for an infinitesimal positive constant q (see 
equation (5 ) ) ,  and x(q ,  o + i/s) is the Lindhard susceptibility for a finite positive q ,  
namely, for q = fi /s. For T = 0, the k integration in the Lindhard susceptibility can be 
performed analytically also for a finite ?J ( =h/s ) .  The relaxa.tion time z is mostly treated 
as a fitting parameter in each analysis of experimental data. This quantity is considered 
tovarywith change ofdopinglevel. However, here wecalculate themode structure and 
the resonance intensity for various carrier concentrations with a few reasonable values 
of z, in order to confirm that the effect of collision damping has no essential influence 
on the above result obtained by the Lindhard approach. We take a few values of s from 
a range h/z S 2 meV. The value of z is estimated to be around 1 meV from the effective- 
mass ratio m*/m = 0.02 and the conduction electron mobility p, = 50000 cm2 s-l V-l 
(see figure 3 in Rollin and Petford (1955)) by virtue of the relation p e  = er/m*. In the 
case of n-type GaAs, the value of hs is taken to be about 7-11 meV to achieve good 
agreement with experimental data (see Abstreiter er al(1979) and figure 14 in Richter 
(1984)). In the case of n-type InSb, however, the value h / s  = 1 or 2 meV is reasonable, 
in view of the fact that the electron mobility p e  of InSb is one order of magnitude larger 
than that of GaAs. What derives from this analysis is that the effect of collision damping 
broadens the resonance peak in the w dependence of the energy-loss function, and this 
broadening is quite remarkable for plasmon-like modes as a6, as or bl ,  b,, and that this 
effect has nosubstantial influence on the mode energy, the integrated resonanceintensity 
of the energy-loss function and the character of the mode structure, namely, the phase 
relation and the amplitude ratio of Sp,,(q, w )  and 6ppb(q, U).  

Thus far we have examined the structure of coupled plasmon-polar phonon modes 
in the bulk. However, the present analysis is also helpful to improve the understanding 
of those modes at the surface. We can investigate the structure of coupled plasmon- 
phonon surface modes by the same means of decomposing the induced charge density 
into a camer component and a phonon component. We intend to report on this analysis 
of coupled surface modes in the near future (Inaoka 1991). 
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