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Abstract. We investigate the structure of coupled plasmon-phonon modes in degenerate
polar semiconductors by decomposing the induced charge density into & component due to
carrier density fluctuation and a component resulting from optical phonon polarization. This
decomposition of the induced charge density into two components reveals the nature of
plasmon—polar phonon coupling. Each energy dispersion branch has its own characteristic
mode structure. Analysis of the mode structure with change of carrier concentration shows
how the character of the mode structure varies when strong plasmon-polar phonon mixing
occurs and, consequently, how the plasmon-phonon coupling transformms its character when
strong mixing 0Ccurs,

1. Introduction

In doped polar semiconductors, plasmons due to free carriers are coupled with optical
phonons when the doping level is appropriately chosen and these excitations lie in the
same energy regime. Experimentally, the coupled plasmcn—phonon modes have been
observed by infrared reflection measurements and Raman scattering measurements
(Richter 1984, Abstreiter et al 1984 and references therein). Especially, by varying the
incident laser frequency, Raman scattering measurements can observe excitation modes
of finite ¢ values in a large g region that extends to the single-particie excitation
continuum. The principal theoretical approaches to the description of the response of
free carriers are the hydrodynamic theory, the Lindhard theory (Lindhard 1954) and
the Lindhard-Mermin theory (Mermin 1970). In order to investigate coupled plasmon-—
phonon modes, these treatments of carriers are combined with the Lorentzian oscillator
model, which describes the optical phonon polarization (Richter 1984, Abstreiter et a!
1984 and references therein). The Lindhard approach (Katayama ef af 1975, Lemmens
and Devreese 1974, Lemmens et af 1975, Yuasa et af 1986) and the Lindhard-Mermin
approach (Abstreiter er al 1979} describe the response of free carriers in the random-
phase approximation, and involves single-particle excitaticns in an appropriate manner.
The Lindhard approach does not include the effect of collision damping due to
impurities, etc. Mermin incorporated the effect of collision damping into the Lindhard
theory within the relaxation time approximation (Mermin 1970). This is the Lindhard-
Mermin theory. The relaxation time introduced in the Lindhard-Mermin theory is
mostly treated as a variable parameter to fit experimental data. These theoretical
approaches have been successfully applied to analysis of experimental data, particularly
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Raman scattering measurements. The central subject of these theoretical analyses was
to calculate the energy-loss function, and ultimately, Raman spectra. The energy-loss
function plays a central role in describing the Raman scattering cross section (see, for
example, equation (75) in Richter (1984) or equation (2.96) in Abstreiter et af (1984)).

The present work attempts to gain a deeper insight into the plasmon-polar phonon
coupling itself. We investigate the structure of coupled plasmon-polar phonon modes
by decomposing the induced charge density of each excitation mode into a component
due to carrier density fluctuation and that arising from optical phonon polarization. This
decomposition of the induced charge density into two components reveals the nature of
plasmon-polar phonon coupling. In addition, we also examine the contribution of each
component to the resonance intensity of the energy-loss function. Analysis of the mode
structure with change of carrier concentration shows how the character of the mode
structure varies when strong plasmon-phonon mixing occurs and, accordingly, how the
plasmon-phonon coupling transforms its character when strong mixing occurs.

We are concerned with n-type degenerate polar semiconductors. In doped polar
semiconductors such as n-type GaAs and n-type InSb (in particular, in n-type InSb),
carrier electrons readily become degenerate as doping becomes heavier, because com-
bination of an exceedingly small effective mass and a large dielectric constant gives a
very large effective Bohr radius and, consequently, averysmall effective electron density
parameter. We adopt n-type InSb as an exampie for calculation. Our analysis is, for the
most part, based on the Lindhard theory (Lindhard 1954) combined with the Lorentzian
oscillator model, and only in the last section do we invoke the Lindhard-Mermin theory
(Mermin 1970) to explore the effect of collision damping due to impurities, etc. The
effect of collision damping makes no significant alteration to the result that has been
obtained by the Lindhard approach.

2. Model

We employ the Lindhard theory (and the Lindhard~Mermin theory only in the last
section) to describe the response of carriers and the Lorentzian oscillator model to
describe the phonon polarization.

The external charge density s{g, @), which is introduced to exert perturbation on the
system, generates the external potential

Ulg, w) = (47/4%)s(q, w) (M
where g and w denote a wavevector and an angular frequency, respectively. The total
potential V(g, w) is produced by both external charges and induced charges:

V(g ) = (4n/2.¢4")[s(g, @) + 6p(q, w)]. (2)
Here &, is the high-frequency dielectric constant to describe the background screening,
and dp(q, w) is the induced charge density. The induced charge density dp(g, w) can

be decomposed into a component arising from carrier electron density fluctuation,
dpe(q. ), and a component due to phonon polarization, 6p,u(q, w):

dp(g, w) = 8p.(g, @) + 8p (g, w). (3)
The response of carrier electrons is described by the equation
dpalg, ) = e’x(q, ®)Vig, w). )
In the Lindhard theory. the susceptibility y(g, w) takes the form
L[Sk fkr@-f®)
x(g. w)=2 f 27)? ek + 9) — (k) + hoo + in° )
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In this equation (k) is the energy dispersion of the conduction band, which is given by

e(k) = #k* 2m* (6)
7 is an infinitesimal positive constant and f(k) is the Fermi-Dirac distribution function
for conduction electron states. For simplicity of calculation, we neglect the temperature
effect around the Fermi level. In this approximation, f(k) becomes a step function, and

the integration on the right-hand side of equation (5) can be performed analytically
(Lindhard 1954). The optical phonon polarization P(r, w) is described by the equation

(wto — @* — iyw)P(r, w) = = (£ /4m) w0y, srad V(r, w) @
where @y, is defined by
w%h = [(&o ~ sm)/s“]wzm. (8)

In equations (7) and (8), wrg is the transverse optical phonon frequency, €. and &
are the high-frequency and static dielectric constants at zero carrier concentration,
respectively, and y is the phonon relaxation rate constant. The induced charge density
arising from phonon polarization, dp,,(r, ), is given by

Oppm(r, w) = — divP(r, ). )]
Taking the divergence and Fourier transform of equation (7) yields

Ex W 2 .
= — Vig, w). . 10
6pph(97w) 4nw%~0—w2—iywq (g w) ( )
Elimination of s(q, ), 80.(g, w) and p,(q, w} from equations (1), (2), (3), (4) and
(10) to obtain the relation between U(g, w) and V(g, ®), and the definition of the
dielectric function &(gq, w) as

Vg, w) = Ulg, w)/&(q, ») (11)
leads to the dielectric function of the well known form
E(q’ w) = Eph (m) - (47[82/‘12)7((45 w) (12)

where &,,(w) is the dielectric function to describe the phonon polarization and the
background polarization:

2
1)}
=g, [1+ o). 13
Em(w) =& (1 w%-o—wz—lyw) (13)

From equations (1), (4), (10), (11), (12) and (13), 8p.(g, @)/s(q, ®) and dp(g, w)/
s(g, w) are expressed as

8pa (g, ®)/s(g, 0) = — [eg, @) — epn(@))/e(g, @) (14)
and

Op (g, ©)/s(q, ) = — [ep(w) ~ e-]/e(q, o) (15)
in terms of £(gq, @), x(w) and &... The energy-loss function F(g, ), which is defined by

Flg, w) = Im[—1/e(q, ®)] (16)

plays an important role in examining excitation modes. Here Im denotes the imaginary
part. Addition of equations (14) and (15) leads to the alternative expression of the
energy-loss function:

) = ~ 1 (1AL (L 20 00) )
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Table I. Carrier electron concentrations # and related quantities relevant to the present

analysis.

H kF rU as

(107em™  {(10°em™)  mE/m, (A) (A) e
o 02717 9.300 0.01591 206.4 5947 0.3470
ny 0.5137 11.50 0.01699 1669  557.0  0.299
ny 09268 14.00 - 0.01837 1371 5150  0.2662
n, 1463 16.30 001976 1177 4789  0.2458
n,  2.280 18.90 002142 1015 4418 0.2298
n, 3796 2.40 0.02377  85.68 . 398.1 0.2152

n, = Label 10 indicate each carrier electron congentration.

mt /m, = Electron-effective mass ratio defined at Fermi wavenumber &¢.
ry = Radius of sphere containing one electron {4nrd/3)n = 1.

at = Effective Bohr radius a} = goh?/mgé*.

r} = Effective electron density parameter r} = ro/ag.

This expression signifies that the value of the energy-loss function can be decomposed
into an electron contribution and a phonon contribution. A plot of 8p,(q, w)/
[£.5(g, ©)], 50,(g, w)/[.5(g, @)] and 1/e(g, w) (=V(g, ®)/U(g, w)) on the complex
plane for each resonance mode elucidates the structure of the coupled plasmon—polar
phonon mode and the contribution of the carrier electron gas or the phonon polarization
to the energy loss. As is seen from equations (16) and (17), the sum of Im[Sp.(q, @)/
£.5(g, w)] and Im[Sp,n(gq, w)/z.5(gq, )] isequal toIm[1/#(g, w)]. We take n-type InSb
as an example for calculation. The conduction band dispersion of InSb, though almost
isotropic, is highly non-parabolic (see Kane (1957) or figure 2 in Inaoka et af (1987)).
This effect of non-parabolicity is incorporated into the calculation by using the effective
mass defined at the Fermi wavenumber &g by

L L(eEw) "
Mg ﬁ"k}:‘ dk kskp

This is a good approximation when we are concerned with excitation modes whose
wavenumbers g are small compared with k. The conduction band dispersion E(k) can
be calculated by Kane’s scheme (equation (10) in Kane (1957)) with the band parameter
values (Isaacson 1968), m¢ /m, = 0.0136 (conventional effective-mass ratio defined at
the conduction band bottom), A = 0.98 ¢V (spin-orbit splitting) and E, = 0.235eV
(band gap for T = 1.4 K). The above effective mass my¢ is employed as the effective
mass m* in the Lindhard susceptibility x(q, ). Incidentally, the band gap E, has an
appreciable temperature dependence. At T = 290 K, the band gap takes the value E, =
0.17 eV (Roberts and Quarrington 1955), which leads to a somewhat different value of
mg. In the following calculation, we use the values of ., &, wrg and y that were
determined by Hass and Henvis (1962) by means of infrared reflection measurements,

3. Variation of the mode structure in strong plasmon—polar phonon mixing

Plasmon energies vary with change of doping level, namely change of carrier concen-
tration, and strong plasmon-polar phonon mixing occurs when plasmon energies cross
over phonon energjes. In this section, we explore how the mode structure varies when
strong mixing takes place. In table 1, values of the effective carrier electron density
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Figure 1. Energy dispersion diagrams for two carrier concentrations (#, and n, in table 1).
The dotted and broken curves are described in the text.

parameter r} are presented for six carrier concentrations, which cover the strong mixing
concentration regime. In view of these high effective densities, we can expect carrier
electrons to be highly degenerate in the carrier concentration regime where strong
plasmon—phonon mixing occurs.

We can draw energy dispersion curves by calculating the energy-loss function F(g, )
and Jocating resonance modes, Figure 1 exhibits the energy dispersion diagrams for two
carrier concentrations (s, and a, in table 1). In each panel, the electron-hole pair
excitation continuum extends on the right side of the dotied curve, and the resonance
intensity of the energy-loss function decays away on the broken curves. There exist three
dispersion branches, which we name A, B and C, as shown in each panel. The mode on
branch A or B immediately decays away when it enters the pair excitation continuum.
With decreasing g the mode on branch C gradually loses its resonance intensity and
disappears into the background intensity due to pair excitations. In figures 6 and 18 of
Richter (1984), the existence of the three dispersion branches is shown as a three-
dimensional view of the g and w dependences of the energy-loss function. As carrier
concentration decreases from above to below the strong mixing concentration regime,
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Figure 2. Carrier concentration dependence of energies of the two resonance modes at g =
1.6 % 10°cm™'. The modes a, a, and b, b, are exhibited in figure 1. The two broken curves
are described in the text,

the upper branch A hangsdown to the phonon energy regime (though this branch always
lies above the longitudinal optical phonon energy fiew o = 24.45 meV), which repels the
lower branch B to a lower energy range.

Figure 2 exhibits the carrier concentration dependence of energies of the two modes
atg = 1.6 X 10°cm™L. The abscissa is indicated in logarithmic scale. The subseripts 1 to
6 of mode labels signify carrier concentrations and correspond to the same subscripts of
nin table 1. The energy of the higher-energy mode approaches the longitudinal optical
phonon energy fiw o (=24.45 meV) with decrease of carrier concentration, and the
energy of the lower-energy mode approaches the transverse optical phonon energy fiwrq
(=22.90 meV) with increase of carrier concentration. The broken curve in the higher
concentration range represents the plasmon energy that is obtained by setting £,,(w) in
equation (13) equal to €.; and the broken curve in the lower concentration range
indicates the plasmon energy that is obtained by setting £,,(w) in equation (13) equal to
£q. This carrier concentration dependence of the two mode energies asserts that strong
plasmon—phonon mixing takes place in a concentration range 7 ~ 107 em™2,

We investigate how the mode structure varies when strong mixing occurs. Figure 3
exhibits the structure of the two resonance modes at g = 1.6 x 10° cm™! for various
carrier concentrations. Here 8p.(q, ©)/[e.5(g, ©)], dpm(g. ®)/[£.5(q. ®)] and 1/
&(g, w) (=V(g, w)/U(q, w)) are plotted on the complex plane as full squares, full
triangles and open circles, respectively. Each of these modes corresponds to one of the
modes in figure 2, according to mode labelling. The panels (a) and (b) of figure 3 show
the structure of higher- and lower-energy resonance modes, respectively. The value of
1/e(g, w) becomes pure imaginary or almost pure imaginary at resonance (see open
circlesin figure 3) because resonance corresponds to the pole of 1/£(g, w). The imaginary
part of 1/£(g, w) gives the opposite sign of the value of the energy-loss function. It is
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Figure 3. Structure of the two resonance modes at g = 1.6 % 10° cm™ for six carrier con-
centrations listed in table 1: () higher-energy modes; (b) lower-energy modes (see figure
2). For each mode, the symbols used are: (W) dp.iq, w)/{e.s(g, m)]; (&) Spulq, w)/
[e=5(g, )]; (O) 1/=(g, w) (=V(g, w)/Ulg, w)). The abscissa and the ordinate are the real
and imaginary axes, respectively.

important to note that s(g, w) has the same phase as U(g, w) (see equation (1)) when
we consider the phase relation between 8p.,(g, @) and V(g, w) or between dpp(g, )
and V(g, ). As is seen from equation (17), the imaginary parts of —dp. (g, @)/
[-5(q, w)] and ~8p,n(q, @)/[€.5(g, )] make an additive contribution to the value of
the energy-loss function. What is common to all the modes in figure 3 is that dpy(g, w)
has completely the same phase as V(q, w) because these modes exist outside the pair
excitation continuum and x{g, ) is real and positive (see equation (4)).

First, we analyse the structure of higher-energy modes, which is shown in figure 3{a).
What is characteristic of higher-energy modes is that 8p,(g, @) has the same or almost
the same phase as 8p;(g, ). This is the mode character of branch A. Both the response
of carriers and the phonon polarization operate to enhance the energy-loss intensity,
because Im{8p(q, w)/e.5(g, w)] and Im[Sp,(g, w)/&.5(g, w)] are both negative. The
amplitude ratio of dp, (g, w) and dp (g, w) varies significantly with change of carrier
concentration. Above the strong mixing concentration regime, the amplitude of
8pe(g, w) is considerably larger than that of dp,.(g, ), which implies that the mode is
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plasmon-like. With decrease of carrier concentration, however, §p,,(q, @) becomes
more and more influential, and below the strong mixing concentration regime,
8ppn(q, @) acquires a larger amplitude. This variation in structure with decrease of
carrier concentration implies the transformation from plasmon-like to phonon-like
nature.

Next, we turn our attention to the structure of lower-energy modes, which is shown
in figure 3(b). The feature in the structure of lower-energy modes is that dp, (g, @) isin
anti-phase relation with 6p,,(¢, @), and that the amplitude of 8p,,(g, w) is always larger
than that of dp,,(g, @). This is the mode character of branch B. Carrier electrons make
a dominant contribution to the epergy loss, and the phonon polarization acts to reduce
the energy loss because the imaginary part of dpp(g, w)/{£.5(q. ®)] is positive. The
amplitude ratio of p,(g, @) and 8o, (g, w) varies conspicuously with change of carrier
concentration, though the amplitude of 8p(g, w) is larger than that of 8p,(q, w) over
the whole range of carrier concentration. Above the strong mixing concentration regime,
the amplitude of dp.(q, @) is, in large part, cancelled by that of dp,(q, w). With
decrease of carrier concentration, dpy(g, w) becomes more and more predominant over
dppu(g. ), and below the strong mixing concentration regime the lower-energy mode
becomes plasmon-like.

As is stated in section 1, the present analysis is based on the Lindhard approach,
which does not include the effect of collision damping due to impurities, etc. In this
approach, the energy width of the plasmon resonance peak of the energy-loss function
originates only from coupling with the phonon whose damping is taken into account by
the relaxation rate constant y (see equation (13)). Accordingly, as the mode becomes
more plasmon-like, the resonance peak becomes sharper. This is the reason why
8palq, w)/1e=5(g, )], dppnlg, @)/[£.5(q. w)] and 1/e(g, w) (=V(g, w)/U(q, w)) have
very large imaginary parts in modes a,, a5 or by, b,

Here we examine the integrated resonance intensity, namely, the integrated area of
the resonance peak of the energy-loss function, which is defined by

-1
I= j I ( ) d(ho). (19)
peak V6@ @) _
This quantity plays a significant role in analysing the intensity in the excitation energy
spectrum, According to equations (16) and (17), the integrated resonance intensity f
can be decomposed into an electron component and a phonon component:

I= Iel + Iph (20)
where I, and /;, are expressed as
dp.(q,
Iy=- f Im (—1— —p°l(—"—~3’—)) d(hw) @1
peak £. S{gq,w)
and
16 ,
Iy=— f Im (—— —pi’ﬂ-("—‘”—)) d(hio) 22)
mk E“- S(Q: CU)

respectively. Figure 4 shows the carrier concentration dependence of the integrated
resonance intensity of the two resonance modes at g = 1.6 x 10° cm™. The curves A
and B in figure 4, which correspond to the curves A and B in figure 2, indicate the
resonance intensity of the higher- and lower-energy modes at g = 1.6 x 10° em™*
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Fignre 4. Carrier concentration dependence of the integrated resonance intensity 7 of the
two modes at g = 1.6 X 10° cm™": curve A, higher-cnergy mode; curve B, lower-energy
mode. The two broken curves are described in the text. The ordinate and the abscissa are
both indicated in togarithmic scale.

respectively. The broken curve describing the asymptotic behaviour of curve A cor-
responds to the broken curve in the higher concentration range in figure 2, and it
represents the plasmon resonance intensity that is obtained by setting &,,(@) equal to &,
(see equation (13)). Similarly, the broken curve describing the asymptotic behaviour of
curve B corresponds to the broken curve in the lower concentration range in figure 2,
and it represents the plasmon resonance intensity that is obtained by setting £,,,(w) equal
to ;. Here we follow each curve from higher to lower carrier concentration, considering
the corresponding variation of the mode structure presented in figure 3.

The higher-energy mode (curve A) is plasmon-like above the strong mixing con-
centration regime, as shown by the mode structure in figure 3(a) and by the asymptotic
behaviour of the resonance intensity in figure 4 (note the broken curve in the higher
concentration range). With decrease of carrier concentration, the resonance intensity of
the higher-energy mode decreases monotonically and more quickly in the strong mixing
concentration regime. Below the strong mixing concentrationregime, the higher-energy
mode becomes phonon-like, as is shown by the mode structure in figure 3(a). With
further decrease of carrier concentration, the resonance intensity decreases more and
more slowly and approaches the resonance intensity of the longitudinal optical phonon
in the absence of carrier electrons (=0.30). Figure 5(z) exhibits the carrier concentration
dependence of I,/I and Iph/I for the higher-energy mode. This clarifies the trans-
formation from plasmon-like to phonon-like nature with decrease of carrier concen-
tration.

Above the strong mixing concentration regime, the lower-energy mode involves
considerable cancellation between dp,(g, @) and 8p,,(g, w), as shown in figure 3(b),
and this mode has very weak resonance intensity (curve B in figure 4). As the upper
dispersion branch hangs down on the lower dispersion branch with decrease of carrier
concentration, the lower-energy mode becomes coupled with the higher-energy mode
more strongly and gains stronger resonance intensity. On passing through the strong
mixing concentration regime, however, the resonance intensity 7 turns from acclivity to
declivity. Below the strong mixing concentration regime, the mode becomes plasmon-
like, as is shown by the mode structure in figure 3(d), and with decrease of carrier
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Figure 5. Carrier concentration dependence of /,,/! and £,/1 of the two resonance modes at
g =1.6 % 10°cm™": () higher-energy mode; (&) lower-energy mode.

concentration the mode declines in resonance intensity in accordance with its plasmon
nature. Figure 5(b) displays the carrier concentration dependence of I;/7 and 1,,/1 for
the lower-energy mode. In the lower-energy mode, £, is negative, because the phonon
polarization acts against carrier electrons to suppress the resonance intensity. Above
the strong mixing concentration regime, the value of I is very close to the absolute value
of I, This corresponds to the fact that, as is shown in figure 3(b), 8p.(g. ) and
8ppn(g. w)almost cancel each other, though p.(g, w)survives. With decrease of carrier
concentration, the value of I,/ decreases and approaches unity, which implies that the
mode becomes plasmon-like.

Next, we explore the variation in mode structure of branch C with change of carrier
concentration. Figure 6 exhibits the mode structure of the resonance mode at g =
10 X 10° cm ™! for various carrier concentrations. The subscripts in mode labels indicate
carrier concentrations in accordance with the subscripts of n in table 1. What is charac-
teristic of these modes is that 8p,(g, ), which has almost the same phase as V(g, ©),
has a larger amplitude than 8p,(g, w) and that 8p,(g, )/[£-5(g, )] has a positive
imaginary part, which acts to suppress the energy loss. These characteristics imply that
the phonon polarization plays the leading role and that carrier electrons have a screening
effect on phonon polarization. In each of these modes, 8p(g, @)/[£-5(g, w)] has a finite
real part. because the susceptibility y(gq, @) has a finite imaginary part owing to pair
excitations (see equation (4)). With decreasing carrier concentration the imaginary part
of 8p,u(g. 0)/[e.5(g, w)], which is negative, gains a larger absolute value and the
imaginary part of pu(a, ©)/[£.5(g, @], whichis positive, becomessmaller. In addition,
with decrease of carrier concentration the resonance peak of the energy-loss function
acquires stronger intensity [ and its energy gradually approaches the longitudinal optical
phonon energy #iw; o. These features assert that with decrease of carrier concentration
the screening effect of carrier electrons on phonon polarization works less and less
effectively and finally the partially screened phonon mode reduces to the longitudinal
optical phonon mode. which arises in the absence of carrier electrons.
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Figure 6. Structure of the resonance mode at g = 10 x 10°em~! for six carrier concentrations
listed in table 1, The modes ¢; and ¢, are exhibited in figure 1. For each mode, the

symbols used are: (M) BSpalq w)/[e.5(g, @}]; (A) dpulg. w)/le.5(q. w)]; (O)
lfe(q, CU) (=V(Qi w)f.U(G, w))'

4. Variation of the mode structure with change of wavenurnber ¢

In this section we examine the variation of the mode structure along each dispersion
branch, namely, with change of wavenumber g. The mode structure of branch A and
that of branch B are characterized by the coherent phase relation and the anti-phase
relation of 8p,(g, @) and dp,,(g, @), respectively. Figure 7 shows the g dependence of
I and figure 8 exhibits the g dependence of I;/1 and I;,/I along each of the branches A
and B. Carrier concentrations are indicated by the same subscripts of # as in table 1.
Each curve in figures 7 or 8 terminates at a finite g just before going into the electron—
hole pair excitation continuum. The resonance intensity of the mode on branch A or B
immediately decays away into the background intensity due to pair excitations when the
mode enters the pair excitation continuum.

First, we focus our attention on the case of the highest carrier concentration #g. The
value of I,;/1 of branch A is close to unity and approaches unity with increase of ¢ (curve
ng in figure 8(a)). This corresponds to the fact that at this carrier concentration the
higher-energy branch A is plasmon-like and that with increase of g the mode on branch
A becomes more plasmon-like because its energy becomes higher and gets further apart
from the phonon energy regime. Owing to the plasmon nature, with increase of ¢ the
resonance intensity f decreases monotonically (curve ngin figure 7(a)). As for the branch
B, the value of [, is always larger than the absolute value of I, for each mode on this
branch (see figure 8(b)). At this carrier concentration, however, the value of I, is very
close to the absolute value of 1, and the former strikingly gets closer to the latter with
increase of g (curves ng in figure 8(b)). In addition, at this carrier concentration the
resonance intensity I of branch B is very weak, and decreases monotonically with



4836

T Inacka
[{meV)

(e}

QoS em™) \
N N N L L | N | r L "
0 3 0 T 2 3 quioSem®
Figure 7. The ¢ dependence of I along each of the two dispersion branches A and B: (@)

branch A: (b)branch B. The labels n, 5, n, and n, indicate carrier concentrations (see table
1).

e /T, Ton/1

10----

{a)

A AN EAL R AR LA nat A ———— Y A

- rtenern T 4
: 2 3 qlto¥em™
fi] " L i 1 i ]
[rrrsrasssassssunsrrzatzzaziinne -l
[ mm e nz .
____________ e,
L - ' e
hL ) ) . -5
----------------------- T ng qofemh
N ; 1 N il 2
o 5

[ Toe/1
Figure 8. The g dependence of 7,/7 and 1;,,/T along each of the two dispersion branches A
and B: (@) branch A; (b) branch B, The labels n,, 1;, #, and nqindicate carrier concentrations
{see tabie 1),



Structure of coupled plasmon—polar phonon modes 4837

increase of g (curve n4in figure 7(b)). These features imply that the plasmon-like branch
A, which lies well above branch B, has quite a weak effect on the modes on branch B,
and that with increase of g this effect of the plasmon-like branch A becomes weaker and
weaker because the energy of the plasmon-like branch A becomes higher and becomes
further apart from the energy of branch B.

Next, we turn our attention to the case of lower carrier concentration n5. Theintensity
fraction 1,/ of branch B is close to unity throughout the whole range of g, though it
shows a slight enhancement with increase of g (full curve #, in figure 8(5)). This implies
that at this carrier concentration branch B is plasmon-like, though it retains quite a small
fraction of phonon character especially in the larger g range. The intensity fraction
I/Tor Iph/I of branch A has a significant ¢ dependence (curves #, in figure 8(a)). This
indicates that, though the phonon character is dominant in the smaller g range, the
plasmon character survives persistently in the larger ¢ range. This surviving plasmon
character is also reflected in the energy dispersion. As is displayed in figure 1(«), the
energy dispersion curve of branch A, which is flat in the smaller g range, bends up
significantlyinag range g = 4 x 10°cm ™. This upward bending of the energy dispersion
curve is attributed to the surviving plasmon character in the larger g range. Withincrease
of g, the mode on branch A acquires more plasmon character and its resonance intensity
Iincreases gradually. However, when the plasmon nature becomes quite predominant
and the dispersion curve begins to bend up significantly, the resonance intensity f turns
down and decreases (curve n, in figure 7(a)). This analysis of branch A indicates that,
as the branch A goes down in energy and approaches the phonon energy regime with
decrease of carrier concentration, the mode character is transformed from plasmon-like
to phonon-like, and that this transformation germinates in the smaller ¢ range, and
gradually spreads to the larger ¢ range with decrease of carrier concentration.

The character of variation of I/, I,,// and / at the intermediate carrier concentration
n4 is between the character at the lower concentration #; and that at the higher con-
centration

As carrier concentration decreases from g to 715, the resonance intensity f of branch
B increases over the whole range of g (see figure 7(b)). However, with further decrease
of carrier concentration, the resonance intensity f declines, as is seen from the curve »,
in figure 7(b). This variation of { corresponds to the carrier concentration dependence
of / of the lower-energy mode at ¢ = 1.6 % 105 cm™!, which is shown by the curve B in
figure 4.

Next, we investigate the variation in mode structure of branch C with change of ¢.
Since the situation is the same for every carrier concentration, we present only the result
for the carrier concentration n,. Figure 9 shows the mode structure of resonance modes
at various g values. Asis stated in the preceding section, the phonon polarization plays
the leading role in modes of branch C, and carrier electrons operate to screen the phonon
polarization. With increase of ¢, the imaginary part of dp (g, ®)/[e.5(q, @)], which is
negative, acquires a larger absolute value, while the imaginary part of dp.(q, w)/
f£.s(g, w)], which is positive, decreases significantly after just a slight enhancement.
With increasing ¢, the mode on branch C gains stronger resonance intensity I of the
energy-loss function, and its energy asymptotically approaches the longitudinal optical
phonon energy fiw, . For larger g outside the pair excitation continuum, the resonance
intensity saturates to the intensity of the longitudinal optical phonon mode, which arises
in the absence of carrier electrons. These features assert that, with increase of g, the
screening effect of carrier electrons operates less and less effectively, and that finally the
mode on branch C reduces to the longitudinal optical phonon mode in the absence of
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Figure 9. Structure of resonance modes on branch C at various values of ¢. The labels ¢4,
cl, ¢4, el e and cf signify the resonapce modesat g = 10,12, 14,22, 30and 38 x 10°em™),
respectively. For each made, the symbols used are: (W) dp.lg, @)/[e.s({q. w)]; {A)
8opm{g, w)/[e=5(g. w)]; (O) 1elg, @) (= V(g, w)/U(g, w)).

carriers. In the resonance mode ¢}, 8p.(g, @) has anti-phase relation with V(g, @) (and
Sppnlq. ®)), because this mode is outside the pair excitation continuum and the sus-
ceptibility x(g, @) becomes real (see equation (4)).

5. Summary and discussion

There exist three energy dispersion branches, which are named A, B and C, as is
displayed in figure 1. The results of the present analysis are summarized as follows:

(1) The mode structure of branch A is characterized by the coherent phase relation
of 6p.(q, w) and Sp(g, w). Decrease of carrier concentration induces the trans-
formation of the mode structure from plasmon-like to phonon-like character. Above
the strong mixing concentrationregime, | 8p.(q, w)|islargerthan|dpy(g, )| (plasmon-
like), and below the strong mixing concentration regime, |8p,4(g, ®)| is larger than
|8pa(q, @) (phonon-like). This transformation from plasmon-like to phonon-like
character begins in the smaller ¢ range, and with decrease of carrier concentration it
spreads gradually up to the larger g range. With decrease of carrier concentration, the
resonance intensity of branch A declines, and finally it saturates to the resonance
intensity of the longitudinal optical phonon in the absence of carners.

(#) The mode structure of branch B is characterized by the anti-phase relation of
3p.(g. @) and 8py (g, w). In this case |8p.(g, w}|islarger than [So,(q, w)| throughout
the whole range of carrier concentration. Above the strong mixing concentration regime,
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however, dp.(g, w) is, for the most part, cancelled by 6p,,,(¢, ®), and the resonance
intensity of thisbranch is quite weak. With decrease of carriet concentration, | 5g.(g, @)}
becomes larger compared with lépph(q, )|, and the mode character evolves into the
plasmon-like character. As the plasmon character becomes more influential with
decrease of carrier concentration, the resonance intensity of branch B becomes stronger.
However, after the plasmon character is established, the resonance intensity declines
with further decrease of carrier concentration, as is consistent with the plasmon nature.

(iii) The mode character of branch C is that [8p,,(¢, @}| is larger than |6p.(g, o)|.
Here 8p(¢, @) and 8p.(g, «) are in anti-phase relation outside the electron-hole pair
excitation continuum. The mode on branch C is identified as the longitudinal optical
phonon mode, which is partially screened by carriers. With increase of g or with decrease
of carrier concentration, this screening effect operates less and less effectively, which
leads to enhancement of the resonance intensity.

Here we mention the effect of collision damping due to impurities, acoustic phonons,
etc. The Lindhard-Mermin theory involves this effect within the relaxation time approxi-
mation (Mermin 1970), and gives the electron susceptibility

o, @) = 1Lt G000 + /7

PR T T+ (en)i(g, 0 + /0)/x(g. 0 = 0)]
where 7 15 the relaxation time to describe the effect of collision damping, x(g, @ = 0)is
the Lindhard susceptibility for w = 0 and for an infinitesimal positive constant 7 (see
equation (5)), and x(g, @ + i/7) is the Lindhard susceptibility for a finite positive 7,
namely, for = /7. For T = 0, the k integration in the Lindhard susceptibility can be
performed analytically also for a finite 1 ( =#/7). The relaxation time 7 is mostly treated
as a fitting parameter in each analysis of experimental data. This quantity is considered
to vary with change of doping level. However, here we calculate the mode structure and
the resonance intensity for various carrier concentrations with a few reasonable values
of 7, in order to confirm that the effect of collision damping has no essential influence
on the above result obtained by the Lindhard approach. We take a few values of 7 from
arange i/t <2 meV. The value of 7 is estimated to be around 1 meV from the effective-
mass ratio m* /m = (.02 and the conduction electron mobility g, = 50000 cm?s~! V-!
(see figure 3 in Rollin and Petford (1955)) by virtue of the relation u, = er/m*. In the
case of n-type GaAs, the value of &7 is taken to be about 7-11 meV to achieve good
agreement with experimental data (see Abstreiter er af (1979) and figure 14 in Richter
(1984)). In the case of n-type InSb, however, the value /7 = 1 or 2 meV is reasonable,
in view of the fact that the electron mobility u, of InSb is one order of magnitude larger
than that of GaAs. What derives from this analysis is that the effect of collision damping
broadens the resonance peak in the w dependence of the energy-loss function, and this
broadening is quite remarkable for plasmon-like modes as a4, a5 ot by, by, and that this
effect has no substantialinfluence on the mode energy, the integrated resonance intensity
of the energy-loss function and the character of the mode structure, namely, the phase
relation and the amplitude ratio of p,,(q. @) and dp.u(q, @)

Thus far we have examined the structure of coupled plasmon-polar phonon modes
in the bulk. However, the present analysis is also helpful tc improve the understanding
of those modes at the surface. We can investigate the structure of coupled plasmon-—
phonon surface modes by the same means of decomposing the induced charge density
into a carrier component and a phonon component. We intend to report on this analysis
of coupled surface modes in the near future (Inaoka 1991).

(23)
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